研究成果・プレスリリース
【プレスリリース】安定して存在するトポロジカルなキラル量子細線を発見 ~量子ビットや高効率太陽電池への応用に期待~
発表のポイント
- 黒鉛を薄くしてグラフェン(注1)にすると性質が変化するように、トポロジカル絶縁体(注2)も薄くすると性質が劇的に変わることが予想されています。
- テルル(Te)からなる原子レベルで細い線(量子細線(注3))が、1次元トポロジカル絶縁体であることを明らかにしました。
- 量子コンピューターで処理する情報の最小単位である量子ビットや高効率太陽電池といった応用につながる可能性があります。
概要
金属、絶縁体、半導体に次ぐ固体の新しい状態であるトポロジカル絶縁体は、次世代の超低消費電力デバイスへの応用が期待されており、その基礎となる理論研究に2016年のノーベル物理学賞が授与されるなど、大きな注目を集めています。また、グラフェンの発見(2010年ノーベル物理学賞)を契機に、新しい機能性材料として、原子1個から数個分の厚さの薄膜や量子細線の研究が世界中で進められています。究極的に小さな量子細線のトポロジカル絶縁体は、これら固体物理の重要テーマが交差する領域の興味深い研究対象であり、理論的には研究されていますが、安定して存在する理想的な物質が見つかっておらず、実際の物質での計測結果などをもとにした性質の理解は進んでいません。東北大学、大阪大学、京都産業大学、高エネルギー加速器研究機構、量子科学技術研究開発機構の共同研究グループは、ガスクラスターイオンビーム(GCIB)(注4)と高輝度放射光(注5)を用いた実験と理論計算により、テルルの量子細線が1次元トポロジカル絶縁体であることを明らかにしました。この成果は、バルク結晶(3次元)や薄膜(2次元)形状をした既存のトポロジカル絶縁体とは異なる性質が期待される1次元トポロジカル絶縁体の基礎研究の進展に加えて、量子ビット(量子コンピュータ)や高効率太陽電池などの実現に道を拓くものです。本研究成果は2024年6月6日、科学誌Natureに掲載されました。
詳細な説明
<研究の背景>
材料科学のもう一つの新しい流れとして、従来の固体の分類(金属、絶縁体、半導体)を適用できない新しい物質の状態を持つ「トポロジカル絶縁体」に大きな注目が集まっています。トポロジカル絶縁体の結晶を考えた場合、内部(バルク)は電流を流さない絶縁体状態であるのに対して、表面は金属的な状態になります(図1a)。
興味深いことに、黒鉛を薄くしてグラフェンにすると性質が変化するように、トポロジカル絶縁体も薄くすると性質が劇的に変わることが理論的に予想されています。例えば、薄膜状(2次元)のトポロジカル絶縁体では、薄膜の端に金属伝導(エッジ状態)が形成され(図1b)、不純物があっても安定してトポロジカル電流が流れることが予測されています。この性質は実際に実験で確かめられ、超低消費電力デバイスなどへの応用が期待されています。それでは、薄膜をさらに小さくした量子細線状(1次元)のトポロジカル絶縁体では何が起こるでしょうか? この場合、理論的には細線の端に電荷が現れることが予測されており(図1c)、この電荷を利用した量子計算や高効率の太陽電池などの応用が期待されています。しかし、1次元トポロジカル絶縁体状態を実現する理想的な物質が見つかっておらず、実験による検証は進んでいません。
その後、高エネルギー加速器研究機構フォトンファクトリーにおいて真空紫外放射光をミクロン径に集光して高い空間分解能を実現したマイクロ角度分解光電子分光(ARPES)(注8)装置(図3b)を用いて、量子細線の断面の電子状態を精密に測定した結果、バンドギャップ(注9)内に現れるスピン偏極(注10)した電子状態の観測に成功しました(図4a)。第一原理計算(理論的な計算値)との比較から、このバンドギャップ内に現れた電子状態は、量子細線の端に現れる電荷に由来することを明らかにしました。また、紫外光で試料表面を走査してこの電子状態の空間分布を調べた結果、隣接する量子細線間を電子が飛び移ることで、理論的にも予想されていなかった伝導経路(エッジ状態)が形成されることを明らかにしました(図4b、4c)。
今回の成果は、安定して存在する固体において1次元トポロジカル絶縁体状態の存在を初めて示したものです。
以上の展望に加えて、本成果はガスクラスターイオンビームや高輝度放射光といった先端ビーム技術が電子状態や機能性の解明に有用であることを示すものです。QSTと光科学イノベーションセンター(PhoSIC)が整備して東北大学敷地内で運用が開始された3 GeV高輝度放射光施設(NanoTerasu)において、今回の成果を踏まえたR&Dによりナノ集光ARPES装置が実現すると、この分野の研究がさらに大きく加速し、多くの材料における革新的な機能の理解や開拓につながることが期待されます。
(b) 薄膜状(2次元)のトポロジカル絶縁体では、表面は絶縁体的な状態で、端に金属伝導(エッジ状態)が生じます。
(c) 細線状(1次元)のトポロジカル絶縁体では、細線の断面に点電荷(束縛状態)が現れると予測されています。
(b) Teの量子細線1本が1次元トポロジカル絶縁体とみなすことができ、断面に電荷が現れることが最近の理論で予測されました。
(b) 高エネルギー加速器研究機構フォトンファクトリーのBL-28Aに建設されたマイクロARPES装置。
(b) 微小集光した紫外線を用いて、Teの結晶表面(下段)の赤枠で囲った領域を走査して得たARPES強度の実空間分布(上段)。赤い部分が強度の強い部分で、端電荷に由来する電子状態が存在する領域に対応する。試料のエッジに沿って分布している様子が見て取れる。
(c) 量子細線の端に現れる電荷(図中の黄色)が連なってエッジ状態の伝導が生じる概念図。
謝辞
本成果は、科学技術振興機構(JST)戦略的創造研究推進事業 さきがけ「全結晶方位ARPES法による新規トポロジカル材料開拓」(JPMJPR18L7)(研究代表者:中山 耕輔)、同CREST「ナノスピンARPESによるハイブリッドトポロジカル材料創製」(JPMJCR18T1)(研究代表者:佐藤 宇史)などの助成により得られました。マイクロARPES装置を用いた実験は高エネルギー加速器研究機構物質構造科学研究所放射光共同利用実験課題(課題番号:2021S2-001)により実施しました。
用語説明
論文情報
著者:Kosuke Nakayama*, Atsuya Tokuyama, Kunihiko Yamauchi, Ayumi Moriya, Takemi Kato, Katsuaki Sugawara, Seigo Souma, Miho Kitamura, Koji Horiba, Hiroshi Kumigashira, Tamio Oguchi, Takashi Takahashi, Kouji Segawa, and Takafumi Sato
*責任著者:*責任著者:東北大学大学院理学研究科 助教 中山 耕輔
関連リンク
問い合わせ先
【研究に関すること】
助教 中山 耕輔(なかやま こうすけ)
E-mail:k.nakayama*arpes.phys.tohoku.ac.jp
教授 佐藤 宇史(さとう たかふみ)
TEL:022-217-6169
E-mail:t-sato*arpes.phys.tohoku.ac.jp
【報道に関すること】
Email: sci-pr*mail.sci.tohoku.ac.jp
お問い合わせ
東北大学 国際放射光イノベーション・スマート研究センター
〒980-8572 仙台市青葉区荒巻字青葉468−1